↳ ITRS
↳ ITRStoIDPProof
z
Cond_sumto(TRUE, x, y) → 0@z
sumto(x, y) → Cond_sumto1(>=@z(y, x), x, y)
Cond_sumto1(TRUE, x, y) → +@z(x, sumto(+@z(x, 1@z), y))
sumto(x, y) → Cond_sumto(>@z(x, y), x, y)
Cond_sumto(TRUE, x0, x1)
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_sumto(TRUE, x, y) → 0@z
sumto(x, y) → Cond_sumto1(>=@z(y, x), x, y)
Cond_sumto1(TRUE, x, y) → +@z(x, sumto(+@z(x, 1@z), y))
sumto(x, y) → Cond_sumto(>@z(x, y), x, y)
(0) -> (1), if ((y[0] →* y[1])∧(+@z(x[0], 1@z) →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>=@z(y[1], x[1]) →* TRUE))
Cond_sumto(TRUE, x0, x1)
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (1), if ((y[0] →* y[1])∧(+@z(x[0], 1@z) →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>=@z(y[1], x[1]) →* TRUE))
Cond_sumto(TRUE, x0, x1)
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((y[0] →* y[1])∧(+@z(x[0], 1@z) →* x[1]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>=@z(y[1], x[1]) →* TRUE))
Cond_sumto(TRUE, x0, x1)
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
(1) (SUMTO(x[1], y[1])≥NonInfC∧SUMTO(x[1], y[1])≥COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])∧(UIncreasing(COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])), ≥))
(2) ((UIncreasing(COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])), ≥))
(5) (0 = 0∧(UIncreasing(COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0)
(6) (y[0]=y[1]1∧+@z(x[0], 1@z)=x[1]1∧>=@z(y[1], x[1])=TRUE∧y[1]=y[0]∧x[1]=x[0] ⇒ COND_SUMTO1(TRUE, x[0], y[0])≥NonInfC∧COND_SUMTO1(TRUE, x[0], y[0])≥SUMTO(+@z(x[0], 1@z), y[0])∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(7) (>=@z(y[1], x[1])=TRUE ⇒ COND_SUMTO1(TRUE, x[1], y[1])≥NonInfC∧COND_SUMTO1(TRUE, x[1], y[1])≥SUMTO(+@z(x[1], 1@z), y[1])∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(8) (y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧(-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
(9) (y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧(-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
(10) (y[1] + (-1)x[1] ≥ 0 ⇒ (-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(11) (x[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(12) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(13) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
POL(SUMTO(x1, x2)) = x2 + (-1)x1
POL(>=@z(x1, x2)) = -1
POL(COND_SUMTO1(x1, x2, x3)) = x3 + (-1)x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_SUMTO1(TRUE, x[0], y[0]) → SUMTO(+@z(x[0], 1@z), y[0])
COND_SUMTO1(TRUE, x[0], y[0]) → SUMTO(+@z(x[0], 1@z), y[0])
SUMTO(x[1], y[1]) → COND_SUMTO1(>=@z(y[1], x[1]), x[1], y[1])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_sumto(TRUE, x0, x1)
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)